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Abstract This paper considers the relative accuracy and efficiency of low- and high-order finite-differ-
ence discretisations of the exact potential-flow problem for nonlinear water waves. The method developed
is an extension of that employed by Li and Fleming (Coastal Engng 30: 235–238, 1997) to allow arbi-
trary-order finite-difference schemes and a variable grid spacing. Time-integration is performed using a
fourth-order Runge–Kutta scheme. The linear accuracy, stability and convergence properties of the method
are analysed and high-order schemes with a stretched vertical grid are found to be advantageous relative
to second-order schemes on an even grid. Comparison with highly accurate periodic solutions shows that
these conclusions carry over to nonlinear problems and that the advantages of high-order schemes improve
with both increasing nonlinearity and increasing accuracy tolerance. The combination of non-uniform grid
spacing in the vertical and fourth-order schemes is suggested as optimal for engineering purposes.

Keywords Accuracy · Convergence · Finite-difference methods · Nonlinear waves · Stability

1 Introduction

Marine, coastal and ocean engineers require a means for predicting the propagation of nonlinear water
waves and their subsequent interaction with fixed or floating structures. The physics of most such problems
is well described by the incompressible Navier–Stokes equations, but direct numerical solution of these
equations is limited to very small Reynolds number flows (Re = O(1000).) The introduction of Reynolds-
averaging to obtain the Reynolds-Averaged Navier–Stokes Equations (RANSE) and a turbulence closure
model allows solutions to be obtained at realistic Reynolds numbers. Although progress has been rapid
over the past several decades, the computational effort required by RANSE solvers still imposes severe
limitations on domain size and resolution. The next level of approximation is to neglect viscosity and
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assume an irrotational flow to obtain a potential-flow problem governed by the Laplace equation (see e.g.
[1] for a detailed statement of the problem).

A large number of methods exist for solving the exact Laplace problem for surface gravity waves or
some approximation to it. The most widespread method for treating wave–body-interaction problems is
the Boundary-Integral-Equation Method (BIEM) which uses Green’s theorem to project the three-dimen-
sional (3D) problem onto the boundary surface of the fluid volume. The most mature of these methods
are based on a perturbation expansion in wave steepness and the linear free-surface Green function which
reduces the computational domain to the structure surface and a small nearby portion of the free surface.
Such methods routinely provide second-order solutions which are in widespread use for the design of
offshore structures (see e.g. [2,3]). Higher order in nonlinearity can in principle be obtained using the
free-space Rankine Green function and larger portions of the free surface (e.g. [4–7]).

Numerous other methods have been devised for projecting the problem onto some portion of the fluid
boundary and thereby reducing the computational dimension of the problem by one. Some popular exam-
ples are pseudo-spectral methods e.g. [8,9]; and Boussinesq-type methods which assume a polynomial
expansion in the vertical e.g. [10,11]. Such methods are relatively efficient, but less flexible in treating
wave–body interactions or domains with complicated boundaries.

An obvious alternative to surface projection methods is a direct numerical solution of the 3D Laplace
problem, which is perhaps less common, but on the increase. The finite-volume methodology which is
widely used by RANSE solvers is readily applied to the simpler Laplace problem, either on its own or as
an outer domain surrounding an interior RANSE domain (see e.g. [12]). The finite-element method has
also been applied to the problem e.g. in [13], and a finite-difference-based solution was developed in [14].

This paper is motivated by two observations related to the solution of the exact Laplace problem for
nonlinear wave–body interaction. First, projection methods exchange degrees of freedom (discretising the
internal fluid volume) for complexity (expansions, or Green-function interactions). This exchange is clearly
advantageous for perturbation solutions, but the advantage is less obvious for the fully nonlinear problem.
In this case so much of the boundary requires discretisation that it is possible for 3D methods to be compet-
itive due to their relative simplicity and inherent ease of obtaining an optimal scaling of the solution effort.
The second observation is that most, if not all, existing direct Laplace solvers are second-order accurate
(at best), while significant evidence exists for the advantage of using higher-order schemes.

Thirty years ago, Kreiss and Oliger [15] investigated finite-difference solutions to the linear wave equa-
tion and showed that fourth-order was optimal in some sense. Experience with finite-difference solutions
to Boussinesq-type equations [16] also shows a significant advantage to using fourth-order schemes. Here
we extend the method of [14] as follows. Arbitrary-order finite-difference schemes are used to discretise
the continuous derivatives; and while we retain a structured grid, we allow for a non-uniform grid spacing
to allow clustering of grid points where desired. A fourth-order Runge–Kutta scheme is used for the time
integration. The implementation is only in two dimensions (2D) at this point, and here we find that the
Generalised Minimal RESidual (GMRES) Krylov subspace iterative method preconditioned by the lin-
earised, second-order version of the matrix leads to optimal scaling of the solution effort (i.e., O(N) where
N is the total number of grid points). Reduction of the residual by seven orders of magnitude is achieved in
≈ 10 iterations nearly independently of problem size and the order of the finite-difference schemes used.
In 3D we expect that some form of multigrid will be optimal and this is the topic of ongoing research.

After a description of the theory and implementation of the method in Sects. 2 and 3, the linear conver-
gence, accuracy and stability properties are established by standard Fourier analysis in Sect. 4. In Sect. 5
the nonlinear accuracy of the method is quantified by comparison with periodic solutions based on stream-
function theory [17]. From this we conclude that high-order schemes and a stretched vertical grid are more
efficient than second-order schemes to achieve a target accuracy of solution. This advantage improves with
increased nonlinearity and with decreased error tolerance. Fourth-order schemes are suggested as being
an optimal balance of accuracy and complexity for engineering purposes and some sample calculations for
wave–bottom interaction are presented in Sect. 6. Conclusions are drawn in Sect. 7.
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2 Formulation

Consider the irrotational flow of an incompressible inviscid fluid. A Cartesian coordinate system is adopted,
with origin on the still water plane and the z-axis pointing vertically upwards, x = [x, y] is a horizontal
vector and t is time. The fluid domain is bounded by the sea bottom at z = −h(x) and the free surface at
z = η(x, t). Both η and h are assumed to be single-valued functions of x. Following [18], we express the
kinematic and dynamic free-surface boundary conditions in terms of the velocity potential and the vertical

component of velocity evaluated directly on the free surface: φ̃ = φ(x, η, t), and w̃ = ∂φ
∂z

∣
∣
∣
z=η

ηt = −∇η·∇φ̃ + w̃(1 + ∇η·∇η) (1a)

φ̃t = −g η − 1
2
∇φ̃·∇φ̃ + 1

2
w̃2(1 + ∇η·∇η). (1b)

Here ∇ = [

∂/∂x, ∂/∂y
]

is the horizontal gradient operator, g the gravitational acceleration and partial
differentiation is indicated when the independent variables appear as subscripts. These relations can be
viewed as evolution equations for η and φ̃ to be integrated forward in time from initial conditions. The
horizontal gradients appearing on the right-hand sides can be computed immediately, but obtaining the
vertical component of velocity w̃, requires a means of satisfying the Laplace equation throughout the depth
of the fluid along with the kinematic bottom boundary condition:

∇2φ + φzz = 0, −h < z < η (2a)

φz + ∇h·∇φ = 0, z = −h. (2b)

For a direct solution of this Laplace problem, it is convenient to make a change of variables in the
vertical coordinate (the widely used σ -transformation) defined by

σ(x, z, t) = z + h(x)

η(x, t) + h(x)
= z + h(x)

d(x, t)
, (3)

where the total thickness of the fluid layer d = η + h has been introduced. This transformation converts
the Laplace problem to

∇2φ + ∇2σ φσ + 2∇σ ·∇φσ +
(

∇σ ·∇σ + σ 2
z

)

φσσ= 0, 0 < σ < 1, (4a)

(σz + ∇h·∇σ) φσ + ∇h·∇φ = 0, σ = 0, (4b)

where the derivatives of σ can be expressed as

∇σ = (1 − σ)
∇h
d

− σ
∇η

d
, (5)

∇2σ = 1 − σ

d

(

∇2h − ∇h·∇h
d

)

− σ

d

(

∇2η − ∇η·∇η

d

)

− 1 − 2σ

d2 ∇h·∇η − ∇σ

d
· (∇h + ∇η) , (6)

σz = 1
d

, (7)

which illustrates the specific derivatives of h and η required for their evaluation. After solving (4) for the
potential φ(x, σ), the vertical component of fluid velocity on the free surface is given by

w̃ = 1
d

φσ |σ=1 , (8)

which allows (1) to be stepped forward in time, closing the problem. If the internal kinematics of the flow
are desired, they can also be computed from φ(x, σ), for example the fluid velocities are given by

u(x, z) = φx(x, z) = φx(x, σ) + σxφσ (x, σ), (9)

v(x, z) = φy(x, z) = φy(x, σ) + σyφσ (x, σ), (10)

w(x, z) = φz(x, t) = 1
d

φσ (x, σ). (11)
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3 Numerical solution

For the time-integration of (1) we employ the classical explicit four-stage, fourth-order Runge–Kutta
scheme (see e.g. [19]). For the spatial discretisation, a grid of Nx points is defined along the x-axis at which
the time-stepping variables η and φ̃ are to be evaluated. Periodic or Neumann (specified normal compo-
nent of velocity) conditions are imposed at the horizontal boundaries. For the solution of (4a) and (4b),
Nz points are defined in the vertical under each horizontal grid point, arbitrarily spaced between σ = 0
and σ = 1 (the same vertical spacing is, however, chosen under each horizontal grid point.) Choosing r
nearby points, allows order (r − 1) finite-difference schemes for the first and second derivatives in x and
σ to be developed in the standard way by means of Taylor series expansion and the inversion of a small
linear system at each grid point.

3.1 Finite-difference discretisations

For the one-dimensional first and second derivatives in x and σ , r = α + β + 1 points are used where α

indicates the number of points to the right (or top) and β the number of points to the left (or bottom) of the
point of interest. With periodic conditions all x-derivatives are centrally discretised with α = β, while for
Neumann conditions only points within the computational domain are used leading to off-centred schemes
near the boundaries. For σ -derivatives off-centred schemes are used near the bottom and free surface. For
the mixed xσ -derivative, a full square stencil of r2-points is used and the schemes are thus off-centred near
non-periodic boundaries. In this way, all derivatives are formally accurate to O(�xr−1∗ ) where �x∗ is the
maximum grid spacing, and this is verified in Sect. 4.

The resultant discretisation of (4a) is then applied at all non-boundary grid points, while the appropri-
ate boundary conditions are imposed at boundary points. This gives a rank N = Nx Nz linear system of
equations

A[φ] = [b], (12)

where A is the matrix of coefficients, [φ] a vector of the unknown φ at each grid point and [b] a vector
holding zeros, except at those points corresponding to inhomogeneous boundary conditions.

3.2 Iterative solution of the linear system

The matrix A in (12) is sparse and contains a maximum of r2N nonzero elements. A direct solution to
this system using sparse-matrix techniques is effective at small values of N but is not competitive (even in
2D) as N increases. This is especially true for higher-order discretisations which give more non-zeros per
row and more spreading in the entries, thus leading to extensive fill-in when factoring A, and this quickly
becomes prohibitive both in terms of memory use and computational effort. An iterative solution, properly
preconditioned, turns out to be much more effective. We employ here the GMRES (Generalised Minimal
RESidual) method of [21], preconditioned on the left using the linearised, second-order-accurate version
of A. Specifically, we set η = 0 in (3) which makes σ independent of time and removes all functions of η

from the derivatives in (5–7). Second-order finite-difference schemes (r = 3) are then used to discretise
the system as described above to produce the preconditioning matrix M. The preconditioning step then
consists of solving a linear system of the form M[q] = [s].

Since M is time-constant, it is built and LU factored only once after which preconditioning requires
only a back-substitution step which is generally 10–100 times faster than a factorisation for this problem.
As shown in Sect. 5, the iteration count to achieve a relative convergence tolerance of 10−7 when using
this preconditioner is generally 5–15 and independent of N and kh, although it increases slowly with r



J Eng Math (2007) 58:211–228 215

 0

 1

 2

 
3

 4

 5

 2  2.5  3  3.5  4  4.5  5

lo
g 1

0(
C

PU
)

log10(N)

Direct, r=3
Direct, r=5
Direct, r=7

Iterative

Fig. 1 Scaling of the computational effort for direct and iterative solutions

(approximately a 50% increase for r = 3 to r = 5). Factorisation and back-substitution is performed using
the MA41 package from the Harwell Subroutine Library. These routines are a potentially parallel sparse
multi-frontal variant of Gaussian elimination, which is particularly effective on matrices with a nearly
symmetric pattern. The method chooses pivots from the diagonal, using the approximate minimum-degree
algorithm of [22]. When solving systems with a single right-hand side, the routine also makes efficient use
of level 2 Basic Linear Algebra Subprograms (BLAS), which have been optimised using the Automatically
Tuned Linear Algebra Software (ATLAS, see e.g. [23]). For further details on this routine see [20] and
references therein. In this work we have only used the serial version of the code.

An example of the scaling of the solution effort for both the direct and the iterative solutions is plotted
in Fig. 1, which shows the calculation time to propagate a steady nonlinear wave of approximately 80% of
the limiting steepness at kh = π for 100 time-steps. The log of the calculation time on a 3.2 GHz Pentium
processor with 1 gigabyte of RAM memory is plotted vs. the log of N for the direct solution using second-,
fourth-, and sixth-order discretisations as well as the sixth-order discretisation solved iteratively. Using the
iterative solution, the curves for different order discretisations are indistinguishable on the scale of this
plot. While the direct solutions can be seen to tend towards a super-linear scaling of the effort, the iterative
solution scales with precisely N.

While this preconditioning strategy is expected to work equally well in three dimensions as far as itera-
tion counts go, it is possible that the increased complexity of the linearised matrix in that case will result in
a less than optimal scaling when compared to a multigrid solver. This topic is under investigation and will
be discussed in a follow-up paper.

4 Linear accuracy and stability of the discrete solution

The first step in quantifying the performance of a given discretisation scheme is to consider the linearised
version of the problem on a horizontal bottom:

ηt = w̃, (13)

φ̃t = −g η, (14)

∇2φ + φzz = 0, −h < z < 0, (15)

φz = 0, z = −h, (16)

where for the linear problem φ̃ = φ(x, 0, t) and w̃ = w(x, 0, t). This problem has the well-known travelling-
wave solution
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η = Re

{
H
2

ei(kx−ωt)
}

(17)

φ = Re

{−i g
ω

H
2

cosh [k(z + h)]
cosh (kh)

ei(kx−ωt)
}

(18)

where H is the wave height, L = 2π/k the wave length, T = 2π/ω the wave period, and ω and k are related
by the dispersion relation ω2 = gk tanh (kh).

4.1 Convergence

The essential ingredient of the discrete solution scheme is the evaluation of w̃ from φ̃. To verify the
convergence of the method, we compare the computed value to the exact result w̃ = k tanh (kh) φ̃, for
increasingly fine discretisations. To simplify the analysis, we consider a periodic domain in x with a uniform
grid spacing �x. This makes all x-grid points equivalent and allows this part of the problem to be expressed
in closed form as a function of the x-resolution (number of grid points per wavelength.) For example, the
second-order scheme 1

�x2 (φi−1 − 2φi + φi+1), where φi = φ(x = i�x) becomes

∂2

∂x2 → N2
x

(

−2 + 2 cos

(
2π

Nx

))

, (19)

where we have taken L = Nx �x so that Nx represents the number of grid points per wavelength. This
is standard von Neumann (Fourier) analysis (e.g. [24]). Choosing a convenient wavelength, L = 1, fixes
the wavenumber and choosing a value of kh then determines the depth h. Since the discretisation in the
vertical is on a (possibly) variable grid and non-periodic, the rest of the problem is solved numerically.
Choosing Nz points in the vertical thus produces a reduced version of (12) which is of rank Nz

B [φ] = [b]. (20)

Numbering the grid points from the bottom to the free surface, [b] is a vector of zeros except for the
last entry which holds the known magnitude of φ̃. B is the matrix holding the coefficients for ∂/∂z in the
first row, those for ∂2/∂z2 for rows 2 : Nz − 1 (plus the discrete version of ∂2/∂x2 on the diagonal) and
finally a 1.0 on the last diagonal. After solving this system for φ at each vertical grid point, the vertical
first-derivative scheme is applied to get the approximation for w̃ which can be compared to the exact result.

Figure 2 shows the convergence of the calculations for several choices of discretisation scheme at a
relative water depth of kh = 4. The left-column plots result for a uniform grid using second-, fourth-, and
sixth-order schemes (r = 3, 5, and 7 points, respectively), while the right-hand column shows the same
order schemes applied to a stretched grid which clusters points towards the free surface. The stretched
grid used here is defined by σj = [sin (�θ(j − 1))] where �θ = π/[2(Nz − 1)]. Each plot shows the relative
error (|w̃− w̃e|/w̃e) versus Nz on a log-log scale with w̃e being the exact result. The different lines represent
different values of Nx as shown in the legend on the first plot. An approximate value for the asymptotic
slope of the finest x-resolution (Nx = 1000) line also appears on each plot, and this has been computed
using a least-squares fit to the last four data points on that line. Two points are notable from these plots.
First, the estimated asymptotic convergence rate of each method is close to the expected second-, fourth-,
or sixth-order rate. Secondly, and perhaps of more practical significance, is the difference in magnitude of
the errors for the different order schemes. Of particular interest is the resolution required by each method
to achieve a given accuracy of solution, and especially notable are the large gains in accuracy obtained by a
fourth-order scheme on a stretched grid relative to the widely used second-order scheme on an even grid.
We will return to this point in the next section.

The general trend of the calculations is the same at other values of kh but, as might be expected, the
errors get better with smaller kh, and worse with larger kh, reflecting the transition from a linear to an
exponential behaviour of φ(z).
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Fig. 2 Convergence of the linear w̃ calculated from φ̃ at kh = 4. The “slope” is the asymptotic slope of the line for Nx = 1000.
Nz point values are at [9,12,16,24,32,48,100]

4.2 Stability and accuracy

Fructus et al. [9] have shown how the linear part of the time-stepping problem can be integrated exactly by
means of a Fourier transform, allowing much larger time steps to be taken for the nonlinear contribution.
We have chosen not to do so here because our goal is a model which can treat problems with an arbitrary
horizontal boundary and including fixed and floating bodies of complicated form within the computational
domain. In this case it is not clear how to apply the required Fourier transform in a robust way.
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The linear accuracy and stability of the method can be quantified by considering the semi-discrete form
of the time-stepping equations (13) and (14)

∂

∂t

[
η̌

φ̌

]

=
[

0 J12
−g 0

] [
η̌

φ̌

]

, (21)

applied to the wave solution of (17). Here η̌ and φ̌ are the Fourier amplitudes of η and φ̃, while the factor
J12 is the discrete approximation for k tanh (kh) discussed in the previous section (i.e. w̃ = J12 φ̃). This
is a method-of-lines approach (see e.g. [19,25]) and is valid as long as the above 2 × 2 matrix is amenable
to an eigenvalue decomposition, in which case stability is governed by the largest of these and the stability
region of a particular time-stepping scheme. For the discretisations discussed here, the eigenvalues are
purely imaginary, with the largest occurring at the Nyquist mode. Figure 3 plots the magnitude of the
maximum eigenvalue (normalised by the Nyquist frequency) as a function of relative depth for the Nyquist
wave. These curves are for second-order discretisations (r = 3), showing the effect of increasing vertical
resolution. A uniform vertical spacing is shown to the left and a stretched grid to the right. Figure 4 plots the
same quantities but with a fixed vertical resolution of Nz = Nx and using second-, fourth-, and sixth-order
discretisations. These plots can be used to find the stability limit for any desired time-stepping scheme.
For a given discretisation, stability is insured by keeping the quantity λmax �t within the stability region
of the time-stepping scheme of interest (e.g. for fourth-order Runge–Kutta, |λmax| �t ≤ 2

√
2). Notable
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Fig. 5 Relative amplitude and phase errors over one period as a function of resolution for two Courant numbers. Second-
order model (r = 3) with Nz = 15 at kh = 4. Even grid to the left, stretched grid to the right

from these plots is the relatively minor role played by both the vertical discretisation and the order of the
scheme on the stability limit of the method.

Choosing now to focus on the fourth-order Runge–Kutta method which will be used in practise, we
can extend the stability analysis discussed above to determine the overall accuracy of a given scheme. As
with the convergence analysis, we consider L = 1 so that Nx = 1/�x represents the resolution of the
wave (number of grid points per wavelength). For a given relative water depth kh and a vertical resolution
Nz, the eigenvalues of the system can then be computed. Applied to a single equation, the fourth-order
Runge–Kutta method can be expressed by the complex amplification factor

ρ(�tλ) = 1 + �tλ + (�tλ)2

2
+ (�tλ)3

6
+ (�tλ)4

24
(22)

where λ denotes an eigenvalue of the system. Equation 22 expresses the evolution of the solution in the
eigenvector basis for a single time step, including both a relative amplification given by |ρ(�tλ)|, and a
phase shift of δ = arg(ρ(�tλ)). Clearly, for a stable solution we must have |ρ(�tλ)| ≤ 1. As measures of
overall accuracy we define:

A ≡ |ρ(�tλ)|Nt , Nt = T
�t

(23)

Q ≡ cnum

c
= δ

θ Cr
, θ = 2π

Nx
(24)
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i.e., the relative amplitude and phase error over one complete wave period. Here the hyperbolic Courant
number is Cr = c�t/�x with c the exact phase speed and the expression for Q comes from the numerical
wave period Tnum = 2π�t/δ, which leads to a discrete phase speed of cnum = L/Tnum = �x δ/(�t θ).

Figure 5 plots the amplitude and phase errors of the second-order model with a vertical resolution of
Nz = 10, and at the two Courant numbers 1 and 0.5. These plots are for a relative water depth of kh = 4;
results for an evenly spaced grid appear to the left and for a variable grid to the right. These plots illustrate
two general features of the error. First, dispersion (phase) errors dominate, and are typically several orders
of magnitude larger than diffusion (amplitude) errors; second, reducing the Courant number improves the
diffusion error but not the dispersion error. Figure 6 plots the errors at Cr = 0.5 with a vertical resolution
of Nz = 10 showing the effect of increasing the order of method from second to sixth. This plot makes it
clear that increasing the order of the spatial derivatives has no significant effect on the diffusion errors but
dramatically improves the dispersion error. Figure 7 plots dispersion errors for the same conditions but
with Nz = 15 and Nz = 20.

Finally, Fig. 8 collects the dispersion errors for second-, fourth- and sixth-order discretisations on both
a uniform and a stretched vertical grid as a function of grid resolution. These plots are for Cr = 1 and
kh = 4, and, as found during the convergence calculations, the trend is very similar at other relative water
depths but the errors increase with larger kh and decrease with smaller kh for the same vertical resolution.

Table 1 collects the approximate resolution required by each method to obtain relative phase errors of
10−3, 10−4, and 10−5.
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Fig. 7 Relative phase errors over one period as a function of horizontal resolution with two different vertical resolutions
using second- through sixth-order discretisations. For Cr = 0.5, and kh = 4. Even grid to the left, stretched grid to the right;
top line Nz = 15, bottom line Nz = 20

5 Nonlinear accuracy and efficiency

To quantify the accuracy and efficiency of the schemes discussed above on nonlinear problems, we consider
a series of highly accurate periodic solutions computed using the stream-function-theory method of [17].
Each wave is characterised by a height H, a length L, the water depth h, and a mean Eulerian velocity
uE which is set to zero to model waves in an infinite domain. To cover the full range of interest, we have
chosen the conditions shown in Table 2 for testing the model. Three kh-values appear corresponding to
shallow, intermediate and deep water conditions, and for each of these there are two levels of nonlinearity
at approximately 10% and 90% of the theoretical limiting steepness as found by [26]. (See also [27] where
a convenient rational fit to the data is given.)

For each of the conditions of Table 2 the four models defined in Table 3 have been run. Each test was
run for a total of five periods after which the relative error per wave period was computed from

Error = ‖η5 − ηe‖2

5‖ηe‖2
, ‖ ·‖2 ≡ two norm, (25)

where η5 is the computed surface elevation after exactly five wave periods and ηe is the target result
from stream-function theory. A Courant number of Cr = 1 was used for all cases. The results are col-
lected in Fig. 9 with the mildly nonlinear case to the left and the strongly nonlinear case to the right,
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Fig. 8 Linear dispersion errors for second-, fourth- and sixth-order discretisations as a function of resolution. The Courant
number Cr = 1, and kh = 4

kh-values increase from top to bottom. The point values correspond to the grid resolutions: (Nx, Nz) =
[(16, 9), (32, 9), (64, 12), (128, 24)].

The behaviour of the errors for the 10% case are consistent with the predictions made in Sect. 4.
A relative residual tolerance of 10−7 was used in the iterative scheme for these calculations, so relative
errors of less than 10−5 to 10−6 can not be expected. For the highly-nonlinear cases the errors are typically
larger, but follow a similar trend. The case at kh = 0.5 resembles a very high solitary wave (very sharp and
narrow peak) and required the application of a filter to obtain stable results. The filter used was a simple
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Table 1 Approximate
resolution required to
obtain a given accuracy in
the linear w̃ at kh = 4

“n.a.” indicates that the
values are off the scale of
Fig. 8.

Model Approximate Nx × Nz for an error of

10−3 10−4 10−5

r = 3, even 100 × 80 n.a. n.a.
r = 3, cosine 50 × 32 100 × 80 n.a.
r = 5, even 16 × 16 32 × 32 50 × 60
r = 5, cosine 12 × 10 20 × 16 50 × 25
r = 7, even 10 × 10 10 × 16 15 × 24
r = 7, cosine 7 × 9 10 × 10 15 × 15

Table 2 Periodic
nonlinear wave conditions
used to test the model

kh 0.5 (shallow) 2 (intermediate) 2π (deep)

H/L ≈ 10% (H/L)max 0.0059 0.011 0.0135
H/L ≈ 90% (H/L)max 0.053 0.10 0.12

Table 3 The four models
tested

r Order of accuracy Vertical grid

3 2nd even
3 2nd cosine
5 4th cosine
7 6th cosine

truncation of the Fourier space at a cut-off frequency of half the Nyquist frequency (i.e. FFT, truncate, FFT
back). Apart from this case, no smoothing or filtering was used in these calculations.

Figure 10 plots the iterations required by each model vs. N for the 90% steepness case in deep and
shallow water. The 10% case required approximately half as many iterations.

These results are consistent with the linear analysis and demonstrate that, if results at a given accu-
racy are desired, a significant improvement in efficiency can be obtained by moving from second-order
to fourth-order in the spatial-differencing scheme and stretching the vertical grid. It is also clear that
decreasing accuracy tolerance and increasing nonlinearity favour higher-order methods.

6 Sample applications to shoaling wave problems

The analysis described above suggests that a fourth-order model with a stretched vertical grid of around ten
points and a horizontal resolution of 15–20 points per wavelength will be suitable for general applications
of the method. We include here calculations using such a model for two wave–bottom interaction test
cases: linear shoaling up a beach; nonlinear harmonic generation over a submerged bar.

6.1 Linear shoaling

The derivatives of η appearing in the sigma-transformed Laplace problem were validated by the nonlinear
periodic test cases described above, but the terms involving derivatives of h were not. To validate these
terms, and to test the variable horizontal grid-spacing features of the code, we consider the problem of a
linear wave shoaling up a beach. We use a bathymetry defined by

h(x) = h0 − h0 − h1

2

[

1 + tanh

(

sin (πx
l )

1 − ( 2x
l )2

)]

, − l
2

≤ x ≤ l
2

(26)
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Fig. 9 Nonlinear errors (25) for the four versions of the model listed in Table 3. All plots follow the legend shown

with h0 = 0.5, h1 = 0.025, and l = 12 (see Fig. 11). This gives a mean slope of hx ≈ 0.05. A linear wave
of period T = 0.8014s and deep-water length L0 = 1m is generated at the left end of the domain and
allowed to propagate until a steady state has been reached everywhere. This produces relative conditions
from deep to shallow water, corresponding to 0.4 ≤ kh ≤ π .

Wave generation and absorption is achieved by relaxing the numerical solution towards a specified
analytic solution over regions near the boundaries of the domain. This is an idea which is often applied
in ocean circulation modelling (see e.g. [28] who modified the idea proposed in [29]). Relaxation zones
for simultaneous generation and absorption of waves are created by defining a relaxation coefficient
0 ≤ cr(x) ≤ 1, and an exact desired solution (ηe, φ̃e). After each stage of the time integration, the solution
within a relaxation zone is then redefined to be
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Fig. 10 Average iteration counts for the 90% steepness case
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Fig. 11 Harmonic analysis of a linear wave shoaling up a beach

η(x, t) = [1 − cr(x)] η(x, t) + cr(x) ηe(x, t),

φ̃(x, t) = [1 − cr(x)] φ̃(x, t) + cr(x) φ̃e(x, t). (27)

To avoid reflections, cr should be smooth near the junction between the relaxation zone and the rest of the
computational domain. For pure absorption, the exact solution is simply taken to be zero. Zones of two
wave lengths near both ends have been used here, which generally results in overall reflected wave heights
of less than 0.1%.

Figure 11 plots the amplitude envelope of the converged steady-state time signals for several choices of
horizontal discretisation, along with the exact result predicted by energy conservation:

a(x)

a0
=

⎛

⎝

k(x)
(

1 + 2k0h0
sinh (2k0h0)

)

k0

(

1 + 2k(x)h(x)
sinh (2k(x)h(x))

)

⎞

⎠

1
2

. (28)

For all four discretisations, Nz = 9 points in the vertical have been used and the time step is chosen to
give a deep-water Cr = 1. Results are shown using a coarse and a fine grid (Nx = 257 and 513 points) and
with both a uniform and a stretched horizontal grid spacing. The uniform grids provide resolutions of 16
and 32 points per wavelength, respectively, at the deep end of the domain but at the shallow end, where
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the wavelength has been reduced to ≈ 0.4 m, the resolution is much coarser. The stretched grids keep the
resolution approximately constant along the length of the domain by defining xi = l tanh (C si)/ tanh (C),
si = (i − 1)ds, ds = 1/(Nx − 1), with l the length of the domain and C a constant which controls the
stretching. For this case, l = 16 and C = 1.5 were chosen. While the three other results can be seen to have
converged to the exact solution, the uniformly spaced coarse grid results show significant errors due to the
under-resolution towards the shallow end of the domain.

6.2 Harmonic generation over a submerged bar

As a final example for testing all the features of the model, we consider the transformation of a mildly
nonlinear, monochromatic wave as it travels up and over a submerged bar. As the wave shoals up the
front face of the bar, it steepens dramatically, accumulating higher harmonics which are released on the
down-slope producing an irregular pattern behind the bar. This phenomenon is widely used as a strenuous
test case for nonlinear models of surface wave propagation on a variable bottom. Details of the experiment
can be found in [30], which is usually scaled by a factor of two, to make it equivalent to [31].

The top plot in Fig. 12 shows the bathymetry of the experiment and a snapshot of the steady-state surface
elevation scaled by a factor of three to make it more visible. The lower plot in this figure shows a harmonic
analysis of the time series after a steady state has been reached over the entire domain for the long-wave
case (T = 2.01 s). The calculations were made using Nx = 513, Nz = 9 and �t = .025 s (deep water
Cr ≈ 0.75.) Relaxation zones of length 2L at both ends of the domain were used to generate and absorb
the waves. Stream-function theory was used for the incident wave. The harmonic analysis was performed
by making a least-squares fit of a sum of nine harmonics to the time series (measured or computed) at a
number of points along the tank length. This gave a residual of at least four orders of magnitude smaller
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Fig. 12 Top: bar test geometry with a snapshot of the surface elevation (scaled by a factor 3) along with the measurement
locations. Bottom: harmonic analysis of the time series at steady-state



J Eng Math (2007) 58:211–228 227

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 25  26  27  28  29  30
η

t

x=12.5m

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 25  26  27  28  29  30

η

t

x=14.5m

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 30  31  32  33  34  35

η

t

x=17.3m

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 35  36  37  38  39  40

η
t

x=21m

Fig. 13 Time series of wave elevations over the bar. Solid line—Calculations; dots—Measurements

than the first harmonic, indicating that level of accuracy. Time series of the elevations at the points indicated
in Fig. 12 are shown in Fig. 13. The comparison with the measured results is quite good.

7 Conclusions

The accuracy and efficiency of a finite-difference-based solution to the exact potential-flow problem for
nonlinear waves has been established in 2D. The model is flexible in terms of the order of the numerical
schemes and the grid spacing; with a computational effort which scales with N, the total number of grid
points used. A fourth-order-accurate model with a stretched vertical grid of approximately ten points, a
resolution of 15–20 points per wavelength and a Courant number of one has been shown to be adequate for
general purpose applications. This model is readily extended to 3D and the inclusion of fixed and floating
bodies is conceptually straightforward, which are the topics of ongoing development.
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